If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9n^2+3n-13=0
a = 9; b = 3; c = -13;
Δ = b2-4ac
Δ = 32-4·9·(-13)
Δ = 477
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{477}=\sqrt{9*53}=\sqrt{9}*\sqrt{53}=3\sqrt{53}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{53}}{2*9}=\frac{-3-3\sqrt{53}}{18} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{53}}{2*9}=\frac{-3+3\sqrt{53}}{18} $
| 3x(x+12)=2x(2x+4)=360 | | 6x2-27x+12=0 | | 6=10/x | | 5u-1=114-10u-10 | | 3.14d=36d | | 7w+7=2(w-9) | | 17x+2=4(4x+2) | | 0.7x+2.8=7 | | 5(53-7y)+6y=33 | | 3.14•d=36d | | (3x+68)÷8=x+6 | | 820-75x=120+65x | | 0=-16t^2+84t+72 | | 3-5b-2b=-2-2 | | (x+10)+2x+(3x+20)=180° | | 5m-4-2m=-3+4m | | 9+7n=2n+9+n | | (2x/11)=(9/4) | | X/4/5x-5=-2 | | x(2x-3)=68 | | (x/11)=(9/4) | | x^2-51=14x | | 20x^2+1.5x-0.4*4x=0 | | 5x+17-4x=2 | | 24= 32−4t | | 3g-9=11g-21 | | 1/4(x+2=5/6 | | 1.5/4x-1=0.4/x+41.5/4x-1=0.4/x+4 | | 11h−8h=12 | | 4(x-5)-5(x-4)=x+5-(x-1) | | 9(3x-1)=31 | | (k-3)/5=11 |